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Abstract—Intra prediction is an important component of
modern video codecs, which is able to efficiently squeeze out the
spatial redundancy in video frames. With preceding pixels as
the context, traditional intra prediction schemes generate linear
predictions based on several predefined directions (i.e., modes) for
blocks to be encoded. However, these modes are relatively simple
and their predictions may fail when facing blocks with complex
textures, which leads to additional bits encoding the residue. In
this paper, we design a progressive spatial recurrent neural network
(PS-RNN) that learns to conduct intra prediction. Specifically, our
PS-RNN consists of three spatial recurrent units and progressively
generates predictions by passing information along from preceding
contents to blocks to be encoded. To make our network generate
predictions considering both distortion and bit rate, we propose
using sum of absolute transformed difference (SATD) as the loss
function to train PS-RNN since SATD is able to measure rate-
distortion cost of encoding a residue block. Moreover, our method
supports variable-block-size for intra prediction, which is more
practical in real coding conditions. The proposed intra prediction
scheme achieves on average 2.5% bit-rate reduction on variable-
block-size settings under the same reconstruction quality compared
with HEVC.

Index Terms—Video Coding, intra prediction, deep learning,
spatial RNN, SATD loss, HEVC.

I. INTRODUCTION

INTRA prediction efficiently reduces spatial redundancy in
videos and improves video coding performance. It has been

adopted in modern codecs like H.264/AVC [1] and HEVC [2].
Compared with H.264/AVC, HEVC achieves a leap in rate-
distortion performance by enriching reference samples and en-
larging the number of angular modes in intra prediction. Be-
sides, HEVC adopts a more flexible quadtree coding structure,
which adaptively chooses the appropriate block size during the
coding process. However, there are some drawbacks in tradi-
tional intra prediction schemes. On one hand, modern codecs
only use a single line of preceding reconstructed pixels above
and on the left side of the current prediction unit (PU) as the
reference to generate predictions, which can be affected by the
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noise (e.g., quantization noise) in the reconstructed pixels. On
the other hand, for directional intra prediction in HEVC, only
Planar, DC and other 33 angular modes are utilized. None of
above can handle complex texture even with Rate-Distortion
Optimization (RDO) [3].

To address the drawbacks of the single-line reference scheme,
improved intra prediction with multi-line reference scheme [4],
[5] or using filtered reference samples [6] are investigated. Fur-
thermore, to enhance the ability of HEVC intra prediction for
complex textures, synthesis-based methods [7], copying-based
methods [8], [9] and inpainting-based methods [10], [11] are de-
veloped. Although these methods mitigate the problems, each of
them has limitations. Though some methods adopt the multi-line
reference scheme, the contextual information of reference pix-
els is usually not utilized. Besides, the performance of copying-
based methods is limited by the structural similarities of intra
patches, while inpainting-based methods are not capable of accu-
rately predicting the pixels at the bottom-right of the current PU.

In the past decades, Deep Neural Network (DNN), as an ef-
fective data-driven solution for computer vision tasks, has been
exploited to accomplish visual recognition, image generation
and image enhancement tasks. With powerful computing de-
vices like GPUs and TPUs [12], given well-defined inputs and
outputs, the network can automatically learn an end-to-end map-
ping from inputs to outputs. This technique has been utilized in
video coding tasks, e.g., fractional interpolation [13], deblock-
ing [14] and fast mode decision [15].

Deep learning can also facilitate intra prediction. Pioneer-
ing works that utilize deep learning models in intra prediction
explore the potential of Fully-Connected (FC) neural networks
[16], [17]. With end-to-end learning and the block-level refer-
ence scheme, the novel predictor can utilize more information
in the context and largely reduce quantization noise. It achieves
a great leap in rate-distortion performance over original HEVC
standard. Recently in the work of [18], by combining FC net-
works and CNNs, the prediction accuracy is further enhanced
and the efficiency of the predictor is improved, which makes
the technique of learned intra prediction practical for video and
image compression. However, there is still much room for im-
provement. Most of FC and CNN networks take the symmetric
inputs and make use of information of the neighboring pixels
in an isotropic way, which ignores the directional spatial redun-
dancy of image modeling. Furthermore, FC networks include
a large amount of parameters. Without explicit constraints and
well-designed network structures, it is hard to obtain a good FC
model.
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Considering these limitations, more advanced models are
called to provide more flexible and enhanced modeling capac-
ity. Compared to CNN and FC, the emerging RNNs improve
the way of information utilization and image modeling. It can
be regarded as the extension of CNN, which has an asymmetric
kernel and enables the information propagation and aggregation
in an anisotropic way. Taking asymmetric inputs, RNNs facil-
itate better directional and structural modeling. Therefore, it is
a trend recently to utilize spatial RNNs for image restoration
and generation tasks [19]–[21]. By unrolling the 2D images and
updating the information in the spatial domain progressively,
RNNs better model pixel-level and feature-level dependencies
in images. This capability facilitates local information aggre-
gation and enhances the overall modeling capacity. Therefore,
RNN is a desirable framework for intra-prediction whose input is
non-symmetric. That is, for a map of pixels or features, the refer-
ence information is located on the left and top of the map, while
a large area on the right bottom of the map contains no useful
information.

In this paper, we aim to address the drawbacks of tradi-
tional intra prediction schemes and aforementioned deep learn-
ing based methods. Specifically, we build a Progressive Spatial
Recurrent Neural Network (PS-RNN) based on spatial RNNs to
learn to predict contents of PUs in intra prediction. Three spa-
tial recurrent units are stacked sequentially, which update and
aggregate internal memory progressively along certain direc-
tions (i.e., horizontal and vertical in our work), facilitating the
modeling capacity of PS-RNN. To further improve the coding
performance of our method, we propose to use SATD as the
training loss of PS-RNN. SATD not only calculates the distor-
tion but also reflects bit-rate, thus it is a good criterion to guide
the network training for intra prediction. Moreover, our method
enables variable-block-size configuration, which further reduces
bit-rate and makes the method practical for video coding appli-
cations. The method is implemented and evaluated on HEVC
as the anchor. Note that as the proposed method is a progres-
sive model, it can also be applied to other hybrid video or image
codecs like Versatile Video Coding (VVC) [22], AOMedia Video
1 (AV1) [23] and H.264/AVC [1]. For non-square partitioning
conditions in these codecs, the model can be set up to progres-
sively generate the prediction signal line-by-line. Beyond that,
the proposed method is a general method and can be adopted
by a video or image codec if the following two properties are
satisfied. First, intra prediction tools are adopted in the codec.
Second, the prediction is conducted in the pixel domain. The
above-mentioned properties are almost satisfied for all modern
hybrid codecs.

To summarize, our contributions are listed as follows:
� We propose a progressive neural network that embeds spa-

tial RNNs for intra prediction. The network takes the ad-
vantages of RNNs and block-wise reference scheme. The
information from the reference blocks is explicitly prop-
agated to the to-be-predicted area. Experimental results
demonstrate that this deep learning method achieves su-
perior performance compared with methods using one sin-
gle line as the reference, especially when faced with severe
quantization noises in low-bit-rate configurations and com-
plex textures.

� A progressive spatial RNN is specially designed for intra
prediction. It infers information from reference inputs to
the current PU progressively along certain directions re-
sulting in consistent and accurate predictions.

� In order to make our network generate predictions with less
distortion and lower bit-rate, we propose to use SATD as
the training loss function. Compared to MSE, using SATD
as loss function largely improves the rate-distortion per-
formance of the codec. We provide comprehensive experi-
mental evaluations and empirical studies to analyze SATD
loss function in network training for video coding.

� Our model supports the variable-block-size configuration,
which makes our method practical for video coding appli-
cations. Allowing variable-block-size coding significantly
reduces bit-rate especially for high-resolution videos.

The rest of the paper is organized as follows. In Section II,
we review related works on deep learning for intra prediction
for video coding and deep learning for image compression. Sec-
tion III introduces our proposed intra prediction. We formulate
the problem and analyze the proposed PS-RNN trained with
SATD loss function in detail. In Section IV, we show our gain
in rate-distortion performance compared with HEVC and pre-
vious methods. We qualitatively and quantitatively compare the
predictions of our method and other methods to explain where
the improvement comes from. Finally in Section V, we draw a
conclusion of this paper.

II. RELATED WORK

A. Intra Prediction for Video Coding

Modern codecs usually consist of multiple parts to progres-
sively squeeze out redundancy and reduce the bit-rate [1], [24].
In this work, we focus on the intra prediction component of
video coding methods. In HEVC, 35 intra prediction modes are
assembled with RDO to predict for the encoding block, includ-
ing Planar mode and DC mode. DC mode fills the block with
DC signals. If Planar mode is selected, each pixel of the block is
generated by a linear combination of corresponding pixels in the
reference samples. For the other 33 modes, the predition signals
are generated according to reconstructed pixels on predefined
directions. However, this reference scheme sometimes fails in
some hard cases, especially for low-bit-rate coding conditions
and frames with complex textures. In low-bit-rate conditions,
large quantization step size results in heavy quantization noise
and interferes the prediction. To overcome this vulnerability to
noise, intra prediction involving multiple reference lines is de-
veloped to jointly take additional reference lines as reference
samples [4], [5]. It reduces the impact of the noise to some ex-
tent.

Tackling the inability to handle complex texture is more chal-
lenging, as the inability lies in the design of angular prediction
modes. Emerging end-to-end methods based on deep neural net-
works have been initially studied in recent years. Deep neural
networks can automatically learn the end-to-end mapping of
inputs and outputs. It can also be easily accelerated using large-
scale parallel programming. In [15], CNN has been utilized for
mode decision as it has a strong potential of capturing global
feature from image data. In [16], [25], FC network and CNN are
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exploited directly in intra prediction. By training a network to
build a mapping from the reference samples to the prediction sig-
nal, FC networks and CNN show improvement in rate-distortion
performance compared with HEVC. There are two main prob-
lems for the deep-network-based intra prediction methods. On
one hand, the network is usually trained using pixel-wise MSE
loss function. But the final coding cost is also influenced by the
correlations between adjacent pixels. Thus, two predictions with
similar MSE can have a much different coding cost. On the other
hand, CNN is not capable of handling asymmetric image com-
pletion tasks, as the whole input block is convolved uncondition-
ally. Large areas with no texture information interferes the ex-
traction of spatial features. To address these issues, we proposed
the spatial RNN for intra prediction with SATD loss function.
The network progressively handles prediction contexts, mitigat-
ing the influence of asymmetric distribution of reference pixels.
Besides, SATD is utilized as the loss function for training. In
HEVC, SATD is widely used to measure the rate-distortion cost
of encoding a residue block. Since it applies a time-frequency
transformation to the difference, it can jointly measure the pixel-
wise difference and the contextual difference. As a result, SATD
is more consistent with the real coding cost than MSE.

B. Deep Learning for Image Compression

Compression of videos and images shares the same philoso-
phy as videos can be regarded as stacks of images. HEVC also
supports encoding images in the still image profile [26]. Image
codecs are relatively simpler than video codecs. So deep learn-
ing is first explored for image compression and then extended to
videos. There have been several approaches to utilize deep neu-
ral networks for lossy image compression. These approaches
are mostly based on autoencoders [27]–[30] and convolutional
recurrent neural networks [31], [32]. These methods achieve
impressive visual quality with low coding bit-rate and the per-
formance is superior to conventional image codecs like JPEG
and JPEG2000. However, these approaches still face challenges
for high bit-rate conditions. Besides, even in low bit-rate condi-
tions, they are not yet comparable with intra coding in HEVC
still image profile. These methods for image compression are
still far from being adopted in video codecs. Different from the
methods mentioned above, in our work, we focus on optimizing
the intra prediction scheme in the loop of video coding.

C. Image Inpainting for Intra Prediction

Intra prediction shares similar characteristics with image in-
painting, which aims to accurately fill in the missing areas of an
image. Previous works on image inpainting study the methods to
propagate information from neighboring known pixels to miss-
ing areas or to copy similar patches to unknown regions [33]–
[36]. Recently, works studying learning based image inpainting
emerge. These methods typically utilize CNN to directly map
input images with unknown regions to restored output image
[37], [38].

Image inpainting techniques have been employed in image
and video coding [10], [11], [32]. However, unlike the original
inpainting task where the unkown regions are relatively small
and usually surrounded by known pixels, in intra predition, only

the preceding pixels are available. Predicting the pixels on the
right below of the current PU is hard as this area is too far from the
reference. Therefore, inpainting based methods face challenges
in intra prediction.

Different from previous works on image inpainting methods,
we take the unique structure of intra prediction context into con-
sideration. The predictions are generated in a progressive way.
Thus, the prediction for the hard regions can take previously
filled regions as the reference.

III. PS-RNN FOR INTRA PREDICTION

In this section, we present a detailed description and analysis
of the proposed PS-RNN. We first formulate the problem, where
we conduct the prediction in feature space. Then we illustrate the
overall framework of the network. After that we investigate the
SATD loss function for training a network for intra prediction.
At last, we show how the proposed network is integrated with
HEVC with variable-block-size configuration.

A. Spatial RNN

RNNs are originally designed to process time series data, such
as speech, texts and videos. The behavior of RNNs is determined
by its basic cell type in the recurrent modeling. Gated Recurrent
Units (GRU) [39] and Long Short-Term Memory (LSTM) [40]
are two commonly used RNN structures. They aggregate the
information in 1D temporal domain from previous time-steps,
update the internal state of each cell given the context of the cur-
rent time-step. However, they face two gaps when being applied
to image processing tasks:
� They need to adapt to aggregating information in 2D spatial

domain.
� They need to model the highly complex mapping of intra-

prediction, which might be more challenging than context
aggregation in time series modeling.

For that, we build our progressive spatial RNN (PS-RNN),
with two distinguished properties:
� We realize 2-D spatial modeling by stacking spatial RNNs

in two orthogonal directions.
� We improve the modeling capacity to capture long-term

and complex spatial dependency by stacking hierarchical
spatial RNNs.

With these two considerations, our PS-RNN is better at han-
dling intra-prediction task.

B. Overall Framework

Motivation: As is analyzed, there are drawbacks for previ-
ously proposed CNNs and FCs, which either fail to fully utilize
spatial correlations, or do not well handle the asymmetric shape
of context. Recently, RNNs have shown great potential in image
and video restoration tasks [19]–[21]. With the progressiveness
property, RNNs can jointly tackle the above mentioned prob-
lems. As it enables the information to propagate in a certain
direction, it is also a desirable framework for intra-prediction
when we utilize it to propagate information from non-missing
regions to missing ones.
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Fig. 1. Architecture of PS-RNN. Preprocessing convolutional layers map the input image into feature space. After the preprocessing, the feature maps are handled
by cascaded PS-RNN units. A spatial down-sampling is performed on the output of the first PS-RNN unit, making the feature maps identical to the PU in spatial
scale. A convolutional reconstruction layer maps the predicted feature maps to pixel space.

Fig. 2. Structure of a PS-RNN unit. It splits a stack of feature maps into vertical and horizontal planes. Each plane represents a feature map of a vertical line or
a horizontal line in the original grey-scale image. After the progressive prediction, these planes are concatenated to reconstruct the feature maps. A convolutional
layer is used to fuse the predictions from the vertical and horizontal feature maps.

Overall Model: Our goal is to accurately generate the pre-
diction signals for the to-be-predicted block given the existing
pixels on the left and top. The goal is achieved in three stages,
shown in Fig. 1. In the first stage, convolutional layers extract
local features of the input context block and transform the im-
age to feature space. As the pixels are filtered and abstracted to
features, the network is able to reduce quantization noise in the
reference pixels. In the second stage, we exploit cascaded PS-
RNN units to generate the prediction of the feature vectors. At
last, two convolutional layers map the predicted feature vectors
back to pixels, which finally form the prediction signals. Though
convolutional layers are employed in the framework, these lay-
ers are not supposed to directly generate the prediction signals.
The size of the kernels in these convolutional layers is small and
these layers are designed to extract local features. Thus, they
are not affected by the asymmetry of the inputs, which disturbs
the reconstruction process of CNN based models. The progres-
siveness of the PS-RNN unit helps mitigate the problem of the
asymmetry. The network is capable of handling intra prediction
for a wide variety of contexts in a codec.

PS-RNN Units: The detailed structure of the PS-RNN units
is illustrated in Fig. 2. In each unit, the input feature tensor
is split to horizontal and vertical lines, respectively. Suppose
the shape of the feature tensor is (n, n, c), with c to be the

number of channels. It is split toXh = {X0··,X1··, . . . ,Xn−1··}
and Xv = {X·0·,X·1·, . . . ,X·n−1·}. Each element in Xh or Xv

is a feature map of shape (n, c). For simplification of the no-
tations and without loss of generality, we take the horizontal
form as an example. To conduct recurrent learning, each el-
ement of shape (n, c) in the sequence is flattened to a vec-
tor of n× c dimensions. We define the t-th feature vector in
the sequence as xt. The defination of Xh can be simplified as
Xh = {x0,x1, . . . ,xn−1}. For each stack of feature vectors, an
RNN with Gated Recurrent Units (GRU) is used to progres-
sively generates prediction signals. This process is formulated
as follows,

zt = σ(Wzxt +Uzht−1),

rt = σ(Wrxt +Urht−1),

ht = zt � ht−1 + (1− zt)�
σ(Wxt +U(rt � ht−1) + b), (1)

where � denotes element-wise multiplication of tensors and σ
is the non-linear activation function, which is tanh in practice.
At the step t, the recurrent unit takes the t-th feature vector xt

in the sequence as the input data. It also takes in the response in
the last step, noted as ht−1. With learned parameters Wz for the
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Fig. 3. Visualization of the predictions produced by PS-RNN. PS-RNN produces the structural patterns accurately even without RDO process.

input xt and Uz for previous response ht−1, it produces the up-
date gate zt to apply for the two source of data. Intuitively, when
t falls in the range of the valid reference samples, xt contains
useful information about the context. The gate weight indicates
more confidence for xt than ht−1 to better model the context
information. When the unit is required to do prediction, i.e., the
input xt contains much less information, the parameters Wz

and Uz control the units to propagate the information encoded
in ht−1. The reset gate rt is in the same form as the update gate,
but another pair of parameters are trained to control whether to
reset the current state. Finally, the input data and the propagated
data are fused to form the response of the t-th step. The combined
horizontal and vertical RNNs can handle complex textures. To
use horizontal and vertical RNNs jointly, the textures in other
directions can be modeled. The GRU (basic cell of our RNNs)
includes reset and update gates, which enable to capture both
short-term and long-term spatial dependency. Thus, it is good
at modelling piecewise smooth regions and non-stationary tex-
tures. By stacking multiple spatial RNNs, PS-RNN can percept
context information from a large region and is capable to pre-
dict textures along any direction with rather complex structures.

After the progressive generation, the convolutional fusion com-
ponent of the PS-RNN unit learns a robust merging of predicted
feature maps. The feature vectors are concatenated back into
feature maps and merged using a convolutional layer. As we
split the progressive prediction into the horizontal and the ver-
tical forms, we exploit the fusion component to help merge the
results of the two predictors and achieve accurate prediction for
complex textures.

Analysis: We propose PS-RNN to address the drawbacks of
previous CNNs and FCs, which directly predict missing pixels
based on local features directly. First, with the update gate, the
network can aggregate knowledge selectively. It learns struc-
tural correlations in the reference area and generates predictions
without the interference of the non-informative pixels in the to-
be-predicted area. Second, with the reset gates, the network is
able to generate non-linear complex textures like rings, as it is ca-
pable of forgetting previous knowledge and restarting when tran-
sitioning to a new context, e.g., new type of texture or new area.

To make this idea clear, we evaluate the ability for the pro-
posed model to handle complex conditions with a visualization.
As shown in Fig. 3, we visualize the prediction results of the
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network with the corresponding context. In Comparison I, we
show that the proposed PS-RNN units can better utilize global
contexts. HEVC (planar mode chosen by RDO) results in blurry
predictions. In Comparison II and III, it is illustrated that noise
in the texture can severely decrease the performance of direc-
tional prediction scheme in HEVC, while the proposed method
can reduce the interference of the noise. In Comparison IV we
can see that HEVC cannot handle textures consisting of two di-
rectional patterns, while PS-RNN networks are able to generate
accurate predictions.

Implementation Detail We use GRU as the cell in the PS-RNN
units. For the first PS-RNN unit, 8 cells are used for the vertical
and the horizontal RNNs, respectively. For the other two units,
we use 4 cells in the GRU. We train the network using Adam
optimizer. PReLU is utilized as the activation function for the
convolutional layers and we follow the original activation setting
of GRU in the PS-RNN units. No activation function is used for
the last layer and the result is clipped to [0, 1] for normalization.
The initial learning rate is set to 0.001. We conduct a step-wise
decay of the learning rate with the ratio 0.1 at the iterations of
{50,000, 75,000, 85,000}, and we train the network for 100,000
iterations. We choose the model of the lowest validation loss of
the last 20,000 iterations.

C. SATD Loss Function

We employ SATD as a loss function for training the proposed
network. The core idea of SATD, namely Hadamard transform,
is first proposed in [41] for image compression. It redistributes
the image energy properly and it can be efficiently implemented.
Therefore, it is employed by many image and video codecs.
In HEVC, SATD with Hadamard transform is used to evaluate
rate-distortion costs. In the following, we first describe the key
component of its calculation – Hadamard transform, and then an-
alyze SATD as a metric and loss function, respectively. Finally,
we show the formulation of using SATD in back-propagation
network training.

Hadamard Transform: Different from MSE, in computing
SATD, Hadamard transform is first applied to the difference of
the predicted block and ground truth, namely the residue, before
the difference is summed up as a loss. It is shown in [42] that
Hadamard transform is equivalent to discrete Fourier transform
when applied to such data in intra prediction. Thus, we are able to
separate the low-frequency component and the high-frequency
component in the residue by evaluating using SATD. With such
techniques, we can differently handle the low-frequency and the
high-frequency component respectively. As this form of trans-
formation is fast and easy to implement, it is used broadly in
HEVC in the RDO process.

SATD as a Metric: In a transform coding scheme, the goal is
to minimize the cost of encoding the residue between the orig-
inal signal and the predicted one. In such a circumstance, the
MSE as a metric has drawbacks in evaluating the actual cost of
the encoding process. As the MSE sums up all the errors for
each pixel regardless of its position, it is a spatially independent
metric, while in the transform coding, the correlation of adjacent

predicted pixels matters a lot. As a result, SATD is used to evalu-
ate the rate-distortion cost for encoding the video. In computing
the SATD of a residue block, the correlations of pixels are taken
into consideration to reflect the cost to encode such a block with
transform coding. Thus, SATD is more consistent with the final
rate-distortion cost in the codec.

SATD as Loss Function: As SATD is a better metric for the
performance of our model to be used in the problem of in-
tra prediction, we propose to use SATD loss function to train
the network for the task. To adopt SATD for network training,
we have a closer examination of the calculation of SATD. We
define D = Ỹ −Y as the difference between the prediction Ỹ
and the ground truth Y. Without loss of generality, only the con-
dition where the shape of the Hadamard transform matrix H is
the same as D is illustrated. When D is larger in shape, it can be
partitioned before the transformation. We apply the transform
as,

D′ = HDHT , (2)

where D′ is the transformed difference. Note that the matrix H
is symmetric, D′ can also be expressed as,

D′ = HDH. (3)

We define the SATD loss function S as,

S = ‖HDH‖1 =
∑

i

∑

j

|D′
ij |. (4)

The main drawback of MSE in the back-propagation process is
that the derivative of S in MSE loss function with respect to Dij

is an expression only related to Dij itself. As a consequence,
the correlations between this pixel and its neighboring pixels
are not measured. In the proposed method, rather than using
MSE as the metric, we use SATD to measure such correlations
to control the bit-rate for encoding the transformed difference
D′. Thus, the network is trained towards the goal of optimizing
the rate-distortion performance of the codec.

As the network is trained using the back-propagation method,
we calculate the partial derivative of the loss S with respect to
each entry of the distance D as. The detailed derivation for the
back-propagation is presented in the Appendix. We further illus-
trate the effect for SATD loss function to better benefits the net-
work to improve the rate-distortion performance in Section IV.

D. Variable Block Size

In HEVC, using larger block size saves the bit-rate, as fewer
bits are needed to encode block-level flags. Supporting more
flexible coding structure is one source of bit-rate reduction of
HEVC compared with previous codecs. In directional intra pre-
diction, a large block with simple texture is directly predicted to
save bit-rate. However, previous work [16] on employing deep
learning in image and video compression restricts the block size
for both the anchor and the proposed model to relatively small
scale like 8 × 8. With this restriction, the performance gain of
the proposed method in real coding conditions is not fully un-
veiled.

In our work, variable block size is supported. We allow the
size of PU to be from 4 × 4 to 32 × 32, controlled by the split
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Fig. 4. Different availability of reference samples in a coding unit. Blocks
with two different colors are processed using two different models.

strategy of HEVC. To train the network for diverse contents
scale, we train the network on a diversified dataset where frames
of different scale are mixed. In HEVC, all block-sizes share
the same intra prediction scheme. With the limitation of the
directional prediction scheme, HEVC tends to split a large block
to smaller ones when its textures are complicated, where more
bits are used to encode the prediction mode due to the split.
Our proposed model can generate more accurate predictions for
large blocks compared with HEVC.

E. Integration With the HEVC

We implement the network in HEVC Test Model (HM) 16.15.
Due to the diversity of the video content, it is hard for a predictor
to handle all the conditions. Instead of totally replacing the intra
prediction part or overwriting one specific directional mode for
the intra prediction of HEVC, we use RDO to decide whether
to use the original HEVC predictor or the proposed predictor.
For cases where the original predictor can perform well enough,
RDO chooses the original HEVC scheme. For other cases where
HEVC fails, the network is selected to handle complex texture.
One additional flag is added to each PU to indicate the selection.
No flag for the directional mode is needed when the proposed
model is selected.

Though the reconstructed pixels on the left below of the cur-
rent PU can be used as reference samples, they are not always
available. Fig. 4 shows an example. Only one of four split PUs
can have full reference samples as we mentioned above. Other
three PUs only have limited reference blocks. To address this
issue, the missing pixels for reference are simply filled with DC
value in HEVC. In our deep model based intra prediction, filling
blocks with constant value brings in extra complexity. Redun-
dant information is fed in the network, which results in poor
performance. Thus, we separately train two models for these
two conditions. The top-left PU is predicted by a model which
is trained using full context. The rest is predicted by a model for
the three-block condition where the blocks from above, the left
and left-above are used as training context.

Fig. 5. Comparison of SATD and MSE loss function corresponding to the rate-
distortion performance in HEVC. First, networks trained with SATD converge
faster and perform better than those trained with MSE. Second, the variation of
the evaluated BD-Rate is larger in networks trained using MSE loss function,
which implies the incapability of MSE loss to indicate the actual rate-distortion
performance of the trained models in the codec.

IV. EXPERIMENTAL RESULTS

A. Training Settings

In data-driven methods, training materials are of great impor-
tance. As video frames are quite similar in one sequence, they
are not ideal training data for intra prediction models, where
content diversity can benefit model training. To effectively train
the network, in our proposed method, the training data is gen-
erated from high-resolution images provided in [43]. These im-
ages include a wide range of contents, including natural view
and artificial scenery. They are diversified in texture, color, and
brightness which benefits the network training.

We propose the model to work for various resolutions, so
we train the model with materials of various scales. The im-
ages are cropped and downsampled to three scales, namely
1792 × 1024, 1344 × 768, and 896 × 512. Using these im-
ages with different scales, our network can work for videos
from high resolution to low resolution. Further, to reduce the
gap between the distribution of the training set and the test set,
the images are previously encoded using HEVC. We set the
Quantization Parameter (QP) to 22, 27, 32, 37 and use the re-
constructed blocks in the decoding process to form the training
pairs. We randomly sample about 3,000,000 pairs to train the
model. A training process takes about 4 hours on an NVIDIA
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TABLE I
QUANTITATIVE ANALYSIS OF SELECTED METHODS. THE RESULTS ARE SHOWN IN BD-RATE USING HEVC (HM 16.15) AS THE ANCHOR. PU SIZE

IS SET TO 8 × 8 IN BOTH THE PROPOSED MODEL AND THE ANCHOR

GTX 1080 GPU. Adam optimizer [44] is used for training. The
network is implemented using TensorFlow [45].

Training the model using pairs with high QP settings can
enhance the ability of models to mitigate the influence of the
quantization noise, but these training pairs are less expressive. To
enhance the robustness to noise while avoiding over-smoothing,
the training material is mixed with reconstructed samples in low
and high QPs.

B. Effectiveness of SATD Loss

The goal of intra prediction is to improve the rate-distortion
performance of video coding. SATD is able to measure the bi-
trate and the distortion jointly, thus it is more commonly used for
video coding. We compare the models trained using SATD and
MSE respectively. We first illustrate the variation of the loss and
the corresponding BD-Rate evaluated on the validation set dur-
ing the training process in Fig. 5. The statistics of the loss value
and the corresponding rate-distortion performance indicate the
superiority of SATD to MSE as a loss function for intra predic-
tion. First, networks trained with SATD converge faster and per-
form better than those trained with MSE. The final performance
of SATD-trained models is far better than that of MSE-trained
models. Second, the variation of the evaluated BD-Rate is larger
in networks trained using MSE loss function, which implies the
incapability of MSE loss to indicate the actual rate-distortion

performance of the trained models in the codec. We also evaluate
the overall performance of PS-RNN models trained using MSE
and SATD as the loss function respectively. As shown in Table I,
with the same architecture, networks trained with SATD have
superior performance in BD-Rate to that of networks trained
with MSE. We also apply SATD loss function to FC networks
[16]. We adopt the same setting used in [16] and we can see
that SATD loss function brings in significant improvement on
FC networks. The experimental results show that SATD is an
effective loss function for different networks in intra prediction,
and it leads to a better performance than MSE in intra prediction.

C. Evaluation of Recurrent Structure

To evaluate the effectiveness of the progressive recurrent
structure of the proposed network, we also compare our PS-
RNN model with FC networks. To conduct this comparative ex-
periment, we implement an eight-layer FC network (FC-SATD)
which has approximately the same amount of parameters as our
proposed PS-RNN. Note that in our experiment, to make the
comparison fair, both the FC model and PS-RNN model are
trained using SATD loss function. The comparison results are
shown in BD-Rate [46] in Table I. We also compare the results
with the FC network in [16], where the same 8 × 8 block size
restriction is applied and MSE is used as the loss function. As we
can see from the quantitative result, by introducing the SATD
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Fig. 6. The evaluation of average BD-Rate with a different number of PS-RNN
units.

Fig. 7. Prediction results on natural context. As show in (I) and (II), our pro-
posed model can handle directional texture without RDO. Also as illustrated in
(III) and (IV), the proposed model can also tackle complex textures.

loss function, we achieve a leap in performance for intra pre-
diction using the same FC architecture. We further improve the
performance with our proposed PS-RNN network.

To allow non-linear generation of the prediction signals, we
exploit multiple PS-RNN units to conduct progressive predic-
tion for several times. To decide the optimal times of progressive
prediction, we evaluate rate-distortion performance with a dif-
ferent number of the PS-RNN units. The results are shown in
Fig. 6. It is observed that, the network with three PS-RNN units

Fig. 8. Failure case analysis. (a) Intra prediction context. (b) Prediction results
of PS-RNN network (16 × 16). (c) Prediction results of HEVC (after RDO).
(d) Original signal of the to-be-predicted block. HEVC can better handle sharp
linear edges. As PS-RNN is trained as a general model for all direction modes and
the prediction without the RDO support is highly ill-posed, it tends to produce
a safe but blurry result.

achieves the best performance in BD-Rate. Thus, we choose to
use three stacked PS-RNN units in the proposed method.

D. Visualization Analysis

To investigate the source of improvement, we visualize the
prediction signals of PS-RNN and FC network, as well as orig-
inal HEVC intra prediction scheme in Fig. 3. It is shown in the
figure that the proposed PS-RNN model can handle intra pre-
diction in both directional and more complex conditions, with-
out RDO of modes. The directional intra prediction scheme in
HEVC can only handle directional pattern and flags for intra
modes need to be transmitted. We also evaluate the predictions
in more cases of natural images compared with FC models, as
shown in Fig. 7. It is illustrated that the progressiveness of PS-
RNN keeps the structure of the edges in the original image better
than FC networks.

However, there are still artifacts in the prediction signal. A
failure case analysis is presented in Fig. 8 The reason for this
phenomenon, as we analyze, is that intra prediction is an ill-
posed problem, where PS-RNN tends to generate the results
which at a large probability lead to small residues guided by
SATD loss, and may deviate from the ground truth slightly for
the input samples.

E. Variable Block Size Analysis

In real conditions, variable-block-size coding is used to fur-
ther save bit-rate. If the predictions for large blocks are accurate,
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TABLE II
PERFORMANCE EVALUATION OF PS-RNN AND THE UNIFIED INTEGRATION PS-RNN+. THE PERFORMANCE IS EVALUATED WITH BD-RATE USING

THE ALL-INTRA MAIN CONFIGURATION. THE ANCHOR IS HM 16.15. THE FIRST FRAME OF EACH SEQUENCE IS TESTED

there is no need to split the blocks and do separate prediction for
each of the smaller blocks. For HEVC, simply allowing a two-
level split in block size brings 7% bit-rate reduction. To evaluate
our proposed model in real coding conditions, we remove the
restriction on block size. The testing experiment is conducted
on Common Test Conditions [47]. In our experiments, we set
the scale of Coding Units (CU) to be up to 32 × 32, allowing
split for intra prediction. The size of PU ranges from 4 × 4 to
32 × 32 and is adaptively decided by RDO. We train a differ-
ent model for each coding block size, respectively. As we eval-
uate the method in all intra configuration, only the first frame
of each sequence is tested. The results are illustrated in gain
in BD-Rate shown in Table II. The quantitative results show
the improvement in rate-distortion performance using our pro-
posed intra prediction method. In addition to the solution with
multiple models for variable block size, we also design a uni-
fied network PS-RNN+ to handle variable-block-size input. The
basic units in PS-RNN+ are identical to those in the original PS-
RNN, while only one set of the core PS-RNN units is used for all
the block sizes. The model of PS-RNN+ consists of three parts:
pre-processing network (two stride convolutional layers), base
network and post-processing network (two deconvolutional lay-
ers). The base network is a PS-RNN trained with8 × 8blocks as
its input. When the block size is larger than 8 × 8, preprocess-
ing network is used for rescaling. We take an example where the

block size is 32 × 32.The input block is first down-sampled to
8 × 8 by pre-processing network. Then, this block is fed into the
base network, whose weights are shared to different block size
input. After the prediction, the output of the last PS-RNN unit of
the base network is up-sampled to the original size 32 × 32 by
post-processing network. To train the pre-processing and post-
processing networks, we fix the weights of the base network and
fine-tune those of others. Note that, the additional pre-processing
and post-processing networks only introduce on average 6.6%
parameter increase. The network for the block-size of 4 × 4 is
kept as original, because up-sampling 4 × 4 blocks will signifi-
cantly increase the overall complexity without any performance
improvement. The evaluation of BD-Rate for the unified inte-
gration PS-RNN+ is shown Table II, together with PS-RNN
models. As we can see from results, different implementation of
PS-RNN models shows similar RD performance.

F. Comparison With Other Methods

We also compare the results with the method proposed in
[17] and [18], which are both neural-network based methods for
intra prediction, where variable-block-size configurations are
also supported. The results are shown in Table III. For each
pair of comparison, we use the same setting as described in the
corresponding papers. The results for IPFCN are tested on four
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TABLE III
COMPARISON ON BD-RATE OF PS-RNN WITH IPFCN-D [17] AND PNNS [18]. IN THE SETTING PS-RNN AND IPFCN-D, THE RD CURVE IS INTERPOLATED FROM

THE RESULTS OF FOUR QPS (NAMELY 22, 27, 32, 37), IN PS-RNN FULL AND PNNS FULL, THE RD CURVE IS INTERPOLATED FROM SIX QPS (NAMELY 17, 22, 27,
32, 37, 42).

TABLE IV
MSE EVALUATION OF THE PREDICTED PIXEL BY PS-RNN AND FC NET [48]

RESPECTIVELY. TYPICAL MODES FOR COMMON CODECS, NAMELY MODES 7, 8
AND 12 ARE TESTED.

QPs (namely 22, 27, 32, 37) while the results for PNNS are
tested on six QPs (namely 17, 22, 27, 32, 37, 42). We provide
the results for these two settings, respectively. It can be seen
from the results that the proposed method achieves a better RD
performance compared with IPFCN-D, while it is comparable to
PNNS. Different from PNNS, we dig for the potential of Spatial
RNNs for intra prediction, which is specifically designed con-
sidering the progressiveness properly in this specific problem.
The proposed method provides some additional insights for deep
learning based intra predictor design.

Additionally, we make a comparison with the work in [48],
which utilize a fully connected neural network for intra predic-
tion. As the method proposed in [48] is a multi-mode based one,
we conduct this experiment on three typical modes. Following
the configuration in [48], the network predicts one pixel at a
time. The results of MSE corresponding to the predicted pixel
is shown in Table IV. The performance is tested in the Common
Test Conditions. As shown in comparison, the proposed PS-
RNN architecture results in lower MSE value for the predicted
pixel for all modes. The experimental results show that PS-RNN
produces better prediction results due to its better modeling
spatial progressiveness in intra prediction than the FC network
in [48].

We illustrate the results of RDO selection in Fig. 9. On average
about 35% PUs are predicted using PS-RNN in all-intra mode,
which reflects the gain in performance.

G. Robustness to Noise

The network can better handle noise in the context compared
with HEVC, as the network takes block-level pixels as the refer-
ence and the pixels are filtered by learned convolutional layers.
As illustrated in Fig. 3(d), the directional prediction scheme in

Fig. 9. Visual results of RDO selection. Blocks with green borders are pre-
dicted by PS-RNN.

HEVC is interfered by the noise in the context. In Fig. 3 I-(d), the
results produced by HEVC are blurry as directional modes do
not perform well in such non-smooth contexts. In Fig. 3 III-(d),
HEVC produces faulty lines. In Table V, we compare the re-
duction in BD-Rate with different QPs. In high QP settings,
the interference of the quantization noise has a large effect. As
shown in Table V, the network has a more significant reduction
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TABLE V
EVALUATION OF PS-RNN MODEL ON BD-RATE WITH SETTINGS OF NORMAL

QPS {22, 27, 32, 37} AND HIGH QPS {33, 38, 43, 48}.

TABLE VI
DECODING TIME OF THE PS-RNN NETWORK IN HEVC (HM 16.15) AND

IPFCN [17]. HEVC (HM 16.15) IS USED AS THE ANCHOR IN THE COMPARISON

in performance for high QP settings, which shows its superior
robustness to quantization noise.

H. Complexity Analysis

We evaluate the decoding time of the proposed network, and
compare the results with the model in [17], where FC networks
are utilized. The results are shown in Table VI. Note that in
the implementation, we use TensorFlow [45] 1.12 as the back-
bone library and the binary is compiled with AVX2 support.
In this paper we mainly focus on the analysis of the potential
rate-distortion performance of PS-RNN-powered intra predic-
tion scheme. To facilitate real world applications, acceleration
of these methods is needed in future work.

V. CONCLUSION

In this paper we propose PS-RNN to improve intra prediction
performance in video coding. The model is end-to-end trained
to handle complex textures, making it capable of predicting for
various content. The progressive generation of predictions ad-
dresses the problem of asymmetry in intra predition. To further
enhance the usability of the network in the codec, we propose
to use SATD loss function for network training. It calculates
both the distortion and the corresponding bit-rate for encod-
ing the residue. Our network supports variable block size in
HEVC, bringing a leap in real coding performance. The pro-
posed method achieves 2.5% bit-rate reduction on average under
the same reconstruction quality compared with HEVC.

APPENDIX

DERIVATION OF THE PARTIAL DERIVATIVES OF SATD
LOSS FUNCTION

The network is trained using the back-propagation method.
To train the network, we derive the partial derivative of the loss
S with respect to each entry of the distance D. The formulation

is presented as follows,

∂S

∂Dkl
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∂
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∑
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ij |
)

∂Dkl
. (5)

Note that the absolute value function y = |x| has no valid deriva-
tive at the point x = 0, so we smooth the function by introducing
a minor smoothing term ε. Then the partial derivative turns to,
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As only the terms involving Dkl in (HD)i· contribute to the
partial derivative w.r.t. Dkl, we remove other terms for simpli-
fication. We have

∂ (HD)i· H·j
∂Dkl

=
∂ (HikDkl)Hlj

∂Dkl
, (7)

which implies that,
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